Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle.

نویسندگان

  • Benjamin W Sullivan
  • W Kolby Smith
  • Alan R Townsend
  • Megan K Nasto
  • Sasha C Reed
  • Robin L Chazdon
  • Cory C Cleveland
چکیده

Biological nitrogen fixation (BNF) is the largest natural source of exogenous nitrogen (N) to unmanaged ecosystems and also the primary baseline against which anthropogenic changes to the N cycle are measured. Rates of BNF in tropical rainforest are thought to be among the highest on Earth, but they are notoriously difficult to quantify and are based on little empirical data. We adapted a sampling strategy from community ecology to generate spatial estimates of symbiotic and free-living BNF in secondary and primary forest sites that span a typical range of tropical forest legume abundance. Although total BNF was higher in secondary than primary forest, overall rates were roughly five times lower than previous estimates for the tropical forest biome. We found strong correlations between symbiotic BNF and legume abundance, but we also show that spatially free-living BNF often exceeds symbiotic inputs. Our results suggest that BNF in tropical forest has been overestimated, and our data are consistent with a recent top-down estimate of global BNF that implied but did not measure low tropical BNF rates. Finally, comparing tropical BNF within the historical area of tropical rainforest with current anthropogenic N inputs indicates that humans have already at least doubled reactive N inputs to the tropical forest biome, a far greater change than previously thought. Because N inputs are increasing faster in the tropics than anywhere on Earth, both the proportion and the effects of human N enrichment are likely to grow in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems.

New techniques have identified a wide range of organisms with the capacity to carry out biological nitrogen fixation (BNF)-greatly expanding our appreciation of the diversity and ubiquity of N fixers-but our understanding of the rates and controls of BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, determining rates and controls of BNF is crucial to placing an...

متن کامل

A Three-Dimensional Model of the Marine Nitrogen Cycle during the Last Glacial Maximum Constrained by Sedimentary Isotopes

Nitrogen is a key limiting nutrient that influences marine productivity and carbon sequestration in the ocean via the biological pump. In this study, we present the first estimates of nitrogen cycling in a coupled 3D ocean-biogeochemistry-isotope model forced with realistic boundary conditions from the Last Glacial Maximum (LGM) ∼21,000 years before present constrained by nitrogen isotopes. The...

متن کامل

Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation

[1] Recent upward revisions in key sink/source terms for fixed nitrogen (N) in the oceans imply a short residence time and strong negative feedbacks involving denitrification and N fixation to prevent large swings in the ocean N inventory over timescales of a few centuries. We tested the strength of these feedbacks in a global biogeochemical elemental cycling (BEC) ocean model that includes wat...

متن کامل

The Nitrogen Paradox in Tropical Forest Ecosystems

Observations of the tropical nitrogen (N) cycle over the past half century indicate that intact tropical forests tend to accumulate and recycle large quantities of N relative to temperate forests, as evidenced by plant and soil N to phosphorus (P) ratios, by P limitation of plant growth in some tropical forests, by an abundance of N-fixing plants, and by sustained export of bioavailable N at th...

متن کامل

Modeling the impact of Trichodesmium and nitrogen fixation in the Atlantic Ocean

[1] In this paper we use a biological-physical model with an explicit representation of Trichodesmium to examine the influence of N2 fixation in the Atlantic. Three solutions are examined, one where the N2 fixation rate has been set to observed levels, one where the rate has been increased to levels comparable to geochemical estimates, and one with no N2 fixation. All solutions are tuned to rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 29  شماره 

صفحات  -

تاریخ انتشار 2014